137 research outputs found

    X-ray crystal structure and EPR spectra of "arsenite-inhibited" Desulfovibriogigas aldehyde dehydrogenase: a member of the xanthine oxidase family

    Get PDF
    J. Am. Chem. Soc., 2004, 126 (28), pp 8614–8615 DOI: 10.1021/ja0490222X-ray crystallography has been used to determine the structure of arsenite-inhibited aldehyde dehydrogenase from Desulfovibrio gigas, a member of the xanthine oxidase family of mononuclear molybdenum enzymes. The structure shows an AsO3 moiety bound to the molybdenum atom of the active site through one of the oxygen atoms. A reduced sample of arsenite-inhibited aldehyde dehydrogenase has a Mo(V) signal that shows anisotropic hyperfine and quadrupole coupling to one arsenic atom. This signal has a strong resemblance with a previously reported signal for arsenite-inhibited xanthine oxidase

    Conformational plasticity of RepB, the replication initiator protein of promiscuous streptococcal plasmid pMV158

    Get PDF
    DNA replication initiation is a vital and tightly regulated step in all replicons and requires an initiator factor that specifically recognizes the DNA replication origin and starts replication. RepB from the promiscuous streptococcal plasmid pMV158 is a hexameric ring protein evolutionary related to viral initiators. Here we explore the conformational plasticity of the RepB hexamer by i) SAXS, ii) sedimentation experiments, iii) molecular simulations and iv) X-ray crystallography. Combining these techniques, we derive an estimate of the conformational ensemble in solution showing that the C-terminal oligomerisation domains of the protein form a rigid cylindrical scaffold to which the N-terminal DNA-binding/catalytic domains are attached as highly flexible appendages, featuring multiple orientations. In addition, we show that the hinge region connecting both domains plays a pivotal role in the observed plasticity. Sequence comparisons and a literature survey show that this hinge region could exists in other initiators, suggesting that it is a common, crucial structural element for DNA binding and manipulation

    Conformational plasticity of RepB, the replication initiator protein of promiscuous streptococcal plasmid pMV158

    Get PDF
    13 p.-7 fig.-1 tab.DNA replication initiation is a vital and tightly regulated step in all replicons and requires an initiator factor that specifically recognizes the DNA replication origin and starts replication. RepB from the promiscuous streptococcal plasmid pMV158 is a hexameric ring protein evolutionary related to viral initiators. Here we explore the conformational plasticity of the RepB hexamer by i) SAXS, ii)sedimentation experiments, iii) molecular simulations and iv) X-ray crystallography. Combining these techniques, we derive an estimate of the conformational ensemble in solution showing that the C-terminal oligomerisation domains of the protein form a rigid cylindrical scaffold to which the N-terminal DNA-binding/catalytic domains are attached as highly flexible appendages, featuring multiple orientations. In addition, we show that the hinge region connecting both domains plays a pivotal role in the observed plasticity. Sequence comparisons and a literature survey show that this hinge region could exists in other initiators, suggesting that it is a common, crucial structural element for DNA binding and manipulation.This study was supported by the Ministerio de Economía y Competitividad (Grants BFU2008-02372/BMC; BFU2011-22588, BFU2014-53550 and Unidad de Excelencia Maria de Maeztu MDM-2014-0435 to MC; BIO2009-10964 and E-SCIENCE to MO;BFU2010-19597, PNEUMOTALK, and CSD2008-00013, INTERMODS, to GdS; Ramón and Cajal subprogramme RYC-2011-09071 to CM), the Generalitat de Catalunya (Grants 2014-SGR1309 to MC and SGR2009-1348 to MO),Fundación Marcelino Botín (MO) and the European Commission (Cooperation Project SILVER, GA No. 260644 to MC and SCALALIFE Project to MO).Peer reviewe

    Structural basis of direct and inverted DNA sequence repeat recognition by helix-turn-helix transcription factors

    Get PDF
    Some transcription factors bind DNA motifs containing direct or inverted sequence repeats. Preference for each of these DNA topologies is dictated by structural constraints. Most prokaryotic regulators form symmetric oligomers, which require operators with a dyad structure. Binding to direct repeats requires breaking the internal symmetry, a property restricted to a few regulators, most of them from the AraC family. The KorA family of transcriptional repressors, involved in plasmid propagation and stability, includes members that form symmetric dimers and recognize inverted repeats. Our structural analyses show that ArdK, a member of this family, can form a symmetric dimer similar to that observed for KorA, yet it binds direct sequence repeats as a non-symmetric dimer. This is possible by the 180° rotation of one of the helix-turn-helix domains. We then probed and confirmed that ArdK shows affinity for an inverted repeat, which, surprisingly, is also recognized by a non-symmetrical dimer. Our results indicate that structural flexibility at different positions in the dimerization interface constrains transcription factors to bind DNA sequences with one of these two alternative DNA topologies.FUNDING This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness [BIO2016-77883-C2-2- P and FIS2015-72574-EXP (AEI/FEDER, EU), to D.R.B., BFU2017-86378-P to F.dlC.] and by the Spanish Ministry of Science (MCI/AEI/FEDER,UE) [PGC2018-093885- BI00 and PID2021-122164NB-I00 to G.M., PID2020- 117028GB-I00 to D.R.B. and PID2019-110216GB-I00 to R. F-L.]. Conflict of interest statement. None declared. ACKNOWLEDGEMENTS Structural experiments were performed at the BL16 beamline at the ESRF European Synchrotron Radiation Facility (France) with the collaboration of EMBL staff, at the PROXIMA beamline at the SOLEIL Synchrotron (France) with the collaboration of SOLEIL staff, and at the XALOC beamline at the ALBA Synchrotron Radiation Facility (Spain) with the collaboration of ALBA staff. We are grateful to Carlos Revilla and Matilde Cabezas at the University of Cantabria for their technical assistance. Author contributions: R.F-L., F.dlC. and G.M. designed the research; L.G-M., R.R. and I.dC. performed the research; R.F-L., D.R.B., F.dlC and G.M analysed the data; and R.F.L., F.dlC. and G.M. wrote the manuscript. All authors reviewed the results and approved the final version of the manuscript

    A C2HC zinc finger is essential for the RING-E2 interaction of the ubiquitin ligase RNF125

    Get PDF
    The activity of RING ubiquitin ligases (E3s) depends on an interaction between the RING domain and ubiquitin conjugating enzymes (E2), but posttranslational events or additional structural elements, yet largely undefined, are frequently required to enhance or regulate activity. Here, we show for the ubiquitin ligase RNF125 that, in addition to the RING domain, a C2HC Zn finger (ZnF) is crucial for activity, and a short linker sequence (Li2(120-128)) enhances activity. The contribution of these regions was first shown with truncated proteins, and the essential role of the ZnF was confirmed with mutations at the Zn chelating Cys residues. Using NMR, we established that the C2HC ZnF/Li2(120-128) region is crucial for binding of the RING domain to the E2 UbcH5a. The partial X-ray structure of RNF125 revealed the presence of extensive intramolecular interactions between the RING and C2HC ZnF. A mutation at one of the contact residues in the C2HC ZnF, a highly conserved M112, resulted in the loss of ubiquitin ligase activity. Thus, we identified the structural basis for an essential role of the C2HC ZnF and conclude that this domain stabilizes the RING domain, and is therefore required for binding of RNF125 to an E2

    Structural basis of a histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance

    Get PDF
    Relaxases are metal-dependent nucleases that break and join DNA for the initiation and completion of conjugative bacterial gene transfer. Conjugation is the main process through which antibiotic resistance spreads among bacteria, with multidrug-resistant staphylococci and streptococci infections posing major threats to human health. The MOBV family of relaxases accounts for approximately 85% of all relaxases found in Staphylococcus aureus isolates. Here, we present six structures of the MOBV relaxase MobM from the promiscuous plasmid pMV158 in complex with several origin of transfer DNA fragments. A combined structural, biochemical, and computational approach reveals that MobM follows a previously uncharacterized histidine/metal-dependent DNA processing mechanism, which involves the formation of a covalent phosphoramidate histidine-DNA adduct for cell-to-cell transfer. We discuss how the chemical features of the high-energy phosphorus-nitrogen bond shape the dominant position of MOBV histidine relaxases among small promiscuous plasmids and their preference toward Gram-positive bacteria

    Structures of pMV158 replication initiator RepB with and without DNA reveal a flexible dual-function protein

    Get PDF
    DNA replication is essential to all living organisms as it ensures the fidelity of genetic material for the next generation of dividing cells. One of the simplest replication initiation mechanisms is the rolling circle replication. In the streptococcal plasmid pMV158, which confers antibiotic resistance to tetracycline, replication initiation is catalysed by RepB protein. The RepB N-terminal domain or origin binding domain binds to the recognition sequence (bind locus) of the double-strand origin of replication and cleaves one DNA strand at a specific site within the nic locus. Using biochemical and crystallographic analyses, here we show how the origin binding domain recognises and binds to the bind locus using structural elements removed from the active site, namely the recognition α helix, and a β-strand that organises upon binding. A new hexameric structure of full-length RepB that highlights the great flexibility of this protein is presented, which could account for its ability to perform different tasks, namely bind to two distinct loci and cleave one strand of DNA at the plasmid origin.© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research

    SMASHing the LMC: A Tidally-induced Warp in the Outer LMC and a Large-scale Reddening Map

    Full text link
    We present a study of the three-dimensional (3D) structure of the Large Magellanic Cloud (LMC) using ~2.2 million red clump (RC) stars selected from the Survey of the MAgellanic Stellar History. To correct for line-of-sight dust extinction, the intrinsic RC color and magnitude and their radial dependence are carefully measured by using internal nearly dust-free regions. These are then used to construct an accurate 2D reddening map (165 square degrees with ~10 arcmin resolution) of the LMC disk and the 3D spatial distribution of RC stars. An inclined disk model is fit to the 2D distance map yielding a best-fit inclination angle i = 25.86(+0.73,-1.39) degrees with random errors of +\-0.19 degrees and line-of-nodes position angle theta = 149.23(+6.43,-8.35) degrees with random errors of +/-0.49 degrees. These angles vary with galactic radius, indicating that the LMC disk is warped and twisted likely due to the repeated tidal interactions with the Small Magellanic Cloud (SMC). For the first time, our data reveal a significant warp in the southwestern part of the outer disk starting at rho ~ 7 degrees that departs from the defined LMC plane up to ~4 kpc toward the SMC, suggesting that it originated from a strong interaction with the SMC. In addition, the inner disk encompassing the off-centered bar appears to be tilted up to 5-15 degrees relative to the rest of the LMC disk. These findings on the outer warp and the tilted bar are consistent with the predictions from the Besla et al. simulation of a recent direct collision with the SMC.Comment: 25 pages, 15 figures, published in Ap
    • …
    corecore